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ABSTRACT

In galactic disks, the Parker instability results when non-thermal pressure support exceeds a certain

threshold. The non-thermal pressures considered in the Parker instability are cosmic ray pressure

and magnetic pressure. This instability takes a long time to saturate (> 500 Myr) and assumes a

background with fixed cosmic ray pressure to gas pressure ratio. In reality, galactic cosmic rays are

injected into localized regions (< 100 pc) by events like supernovae, increasing the cosmic ray pressure

to gas pressure ratio. In this work, we examine the effect of such cosmic ray injection on large

scales (∼ 1 kpc) in cosmic ray magnetohydrodynamic simulations using the Athena++ code. We vary

the background properties, dominant cosmic ray transport mechanism, and injection characteristics

between our simulation runs. We find the injection will disrupt the interstellar medium on shorter

timescales than the Parker instability. If cosmic ray transport by advection is dominant, cosmic ray

injection disrupts the disk on short time scales (< 100 Myr). If cosmic ray transport by the streaming

instability is dominant, the injection creates a buoyant flux tube long after the initial injection (>

150 Myr). Finally, when cosmic ray transport by diffusion dominates, the injected cosmic rays make

an entire flux tube over pressured in a short time (∼ 10 Myr). This over pressure pushes gas off the

tube and drives buoyant rise on time scales similar to the advection dominated case.

Keywords: Galaxy Structure (622) - Cosmic Rays (329) - Magnetohydrodynamical simulations (1966)

1. MOTIVATION

In 1966, Eugene Parker showed the interstellar

medium’s (ISM’s) stratification was unstable when

non-thermal pressures were introduced (Parker 1966).

Parker considered two non-thermal components: the

galactic magnetic field and cosmic rays. This decision

was motivated by measurements of the Milky Way’s

thermal energy density, magnetic energy density, and

cosmic ray energy density. Measurements suggest these

are all on the order of ∼ 10−12 erg cm−3 (Parker 1966;

Ruzmaikin et al. 1988; Boulares & Cox 1990; Ferrière

2001; Draine 2011). With the non-thermal pressures

(cosmic rays and the magnetic field) and under certain

equations of state (EoS), Parker showed the magnetic

field would be dragged upward by buoyant parcels of the
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ISM. This buoyant rise creates a feedback loop because

the curved magnetic field lines (originally parallel to the

disk) provide a slope for gas to slide down into the galac-

tic disk. This process removes more mass from the par-

cel, increasing the buoyancy force on it. The buoyancy

force drives further rising, and the process continues.

The end result is the production of magnetic lobes per-

pendicular to the galactic disk and pockets of dense gas

in the disk (Parker 1966). The instability’s movement of

gas upward could also create mass loss from the disk. If

cosmic ray pressure is driving the instability, then this

effect is an example of cosmic ray driven winds, a pro-

cess included in some global galactic evolution simula-

tions (Everett et al. 2008; Uhlig et al. 2012; Ruszkowski

et al. 2017; Farber et al. 2018; Zhang 2018; Hopkins et al.

2018; Chan et al. 2019). Additionally, cosmic rays can

be a significant component of stellar feedback by heating

and disrupting gas clouds (Farber et al. 2018; Bustard &

Zweibel 2021; Kempski & Quataert 2021). The Parker

instability also influences the galactic dynamo because
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it changes the structure of the galactic magnetic field:

it bends field lines, growing the component of the field

perpendicular to the disk (Hanasz & Lesch 2000, 2003;

Hanasz et al. 2013).

While the non-thermal pressure in cosmic rays and

aforementioned buoyancy mechanism provide a way for

cosmic rays to affect galactic evolution, there is evidence

against the Parker instability being a dominant force

in galaxies. The original Parker instability setup has

been revisited, often including more physical processes

and more realistic setups (Mouschovias 1974; Zweibel &

Kulsrud 1975; Asseo et al. 1978; Giz & Shu 1993; Heintz

& Zweibel 2018; Heintz et al. 2020). Overall, these ad-

ditional considerations show the Parker instability has

a longer growth time than originally estimated, and it

takes up to 500 Myr to saturate. These results also place

more stringent criteria for a galaxy to be Parker unsta-

ble, meaning more galactic disks are likely to not expe-

rience the instability. When a galaxy’s ISM is Parker

unstable, the long saturation time means any structure

created by the instability could become overshadowed

by other mechanisms with shorter timescales like galac-

tic rotation, spiral density waves, and supernovae. The

key difference between the different analyses is the gas

EoS and the cosmic ray EoS. Making either EoS stiffer

(higher adiabatic index γg (gas) or γc (cosmic rays)) will

make the system more stable. A softer EoS will desta-

bilize the system. Parker’s original assumption a cosmic

ray fluid with γc = 0 makes the system very unstable

(Heintz & Zweibel 2018). There is an additional consid-

eration in determining the cosmic ray adiabatic index

γc: it depends on how the cosmic rays are transported

(Wiener et al. 2017). As a result of this dependence, cos-

mic ray transport determines whether the cosmic rays

stabilize or destabilize the system (Zweibel 2017; Heintz

& Zweibel 2018).

The fundamental question underlying Parker instabil-

ity research and cosmic ray driven stellar feedback re-

search is “do cosmic rays change the dynamical evolution

of a galaxy?” Previous research gives complicated and

even conflicting answers to this question. The primary

conflict occurs when comparing results from studies with

different cosmic ray transport mechanisms. There are

three transport mechanisms: (1) advection with the

thermal gas, (2) streaming along the magnetic field, and

(3) diffusion through the thermal gas, along the mag-

netic field. Advection is the simplest - the cosmic rays

are stuck to the ISM and move with it, forcing move-

ment in regions with a cosmic ray pressure gradient and

interacting according to an adiabatic index γc = 4/3.

Streaming and diffusion allow the cosmic rays to move

separately from the gas. Streaming transports cosmic

rays along the magnetic field at the local Alfven speed,

while also heating the gas, resulting in a soft effective

adiabatic index γc,eff = 2/3. Diffusion allows the cos-

mic rays to move through the gas without heating it,

while still forcing the gas through the cosmic ray pres-

sure gradient. In reality, all of these processes should

occur in a galaxy. Global simulations of star formation

feedback suggest that the observed γ-ray luminosities of

galaxies are best fit by diffusive transport with a diffu-

sion coefficient several times larger than the Milky Way

value, but the uniqueness of the fit is unclear (Chan

et al. 2019). Regardless of which transport mechanism

dominates, the saturation time for the Parker instability

is still long (∼ 500 Myr) in an ISM or galactic evolution

context.

Instead of studying the Parker instability directly, we

focus on the effect of cosmic rays. Specifically, we ex-

amine how cosmic rays made in localized injections of

energy (e.g., the shock waves created by a supernova ex-

plosion) disrupt the ISM. Localized cosmic ray injection

has been studied previously as a driver for the galac-

tic dynamo (Hanasz & Lesch 2000, 2003). It produces

structure similar to the Parker instability, with an ex-

tended magnetic lobe and gas condensed in parts of the

disk. Focusing on the sources of cosmic rays instead of

the background led us to ask “are local cosmic ray in-

jections able to change the ISM on time scales shorter

than the Parker instability?” Additionally, we ask four

sub-questions concerning the injection’s impact on the

ISM:

• (Q1) How does the background medium’s stability

change the injection’s impact?

• (Q2) How does the choice of cosmic ray transport

model change the injection’s impact?

• (Q3) How do the injection’s strength and vertical

location change its impact?

• (Q4) How does cosmic ray injection differ from

heat injection by a thermal explosion?

By answering these questions, our simulations provide a

detailed look at how cosmic rays change the ISM on large

scales (∼ kpc) in times shorter than the Parker insta-

bility, which can take over 500 Myr to saturate (Heintz

et al. 2020). Our detailed study provides the most com-

plete picture of the effect of localized cosmic ray injec-

tion on galactic disks by exploring an extended param-

eter space.

Overall, we show for a stiff cosmic ray EoS, when

advection is the dominant cosmic ray transport mech-

anism, cosmic ray injection can change the ISM and
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launch gas on timescales . 100 Myr. Cosmic ray trans-

port dominated by streaming (a softer EoS) results

in buoyant rising, producing structure similar to the

Parker instability on timescales & 150 Myr. Finally, we

find that cosmic ray diffusion launches gas buoyantly,

changing structure on the same timescales as the ad-

vection case. Essentially, cosmic ray injection will

cause significant dynamical change on a short

timescale, and the change is larger if diffusion

is the dominant cosmic ray transport process.

The paper is split into six sections including this mo-

tivation section. In Section 2, we provide background

on the Parker instability and cosmic ray transport. In

Section 3 we cover our numerical methods, our initial

conditions for cosmic ray magnetohydrodynamic simu-

lations in Athena++, and our parameter choices for each

simulation run. In Section 4 we present the results of

each simulation run. In Section 5 we compare the runs

and discuss the implications of our simulations, while

answering our four questions concerning various astro-

physical parameters. In Section 6 we summarize the

paper and provide key takeaways from the work. Read-

ers primarily interested in our results should focus on

Figs. 10, 14, 15 and Sections 5 & 6.

In the appendices, we provide further detail for our

simulations. In Appendix A, we discuss the boundary

conditions of our simulations. In Appendix B, we dis-

cuss the dependence of our simulation results on various

numerical parameters and our parameter choices for the

primary simulations.

2. BACKGROUND

The Parker instability disrupts a magnetohydrostatic

equilibrium in the galactic disk Parker (1966). Parker’s

initial work assumed unrealistic conditions for the Milky

Way, given our modern knowledge of the ISM. Many

of these assumptions were the focus of future research.

Some examples are: Zweibel & Kulsrud (1975) showed

a stiff EoS for dynamical pressure was stabilizing, Asseo

et al. (1978) focused on the impact of the magnetic field

line curvature on the instability’s evolution, Giz & Shu

(1993) reconsidered the assumption of constant gravita-

tional acceleration above and below the midplane, and

Heintz & Zweibel (2018) reconsidered the treatment of

cosmic ray transport.

One key assumption Parker made was that the non-

thermal pressures (magnetic and cosmic ray) were di-

rectly proportional to the gas pressure. He defined con-

stants α and β‡ such that

PB =
B2

2µ0
= αPg Pc = βPg (1)

This assumption of proportionality ignores the multi-

phase nature of the ISM as well as the discreteness of

cosmic sources, which are thought to be primarily young

supernova remnants. For young supernova remnants,

10−20% of the kinetic energy will end up in cosmic rays,

accelerated at by the expanding shock front (Caprioli &

Spitkovsky 2014). In the region around the supernova,

we would then have β ∼ 102 instead of β ∼ 1 for the

cosmic ray background. However, the assumption of

constant ratio is useful for the initial conditions of our

simulations.

We use the equilibrium setup from Giz & Shu (1993)

as our initial ISM background. This equilibrium ISM

setup is illustrated in Fig. 1. We use a smooth gravita-

tional profile

g(z) = −g∗ tanh

(
z

H∗

)
. (2)

instead of the discontinuous −g∗Sign(z) profile Parker

(1966) used originally. The smooth function in Eqn. 2

poses fewer numerical difficulties than a discontinuous

profile (Heintz et al. 2020). In Eqn. 2, the asymptotic

vertical gravitational acceleration g∗ > 0 and the gravi-

tational scale height H∗ depend on the structure of the

galactic disk’s stellar population. In addition to being

more realistic, Eqn. 2 is also easier to implement in a

computational simulation. The gravitational accelera-

tion is shown as red arrows in Fig. 1.

Assuming a plane-parallel hydrostatic equilibrium,

the background gas pressure Pg and gas density ρ are

determined by

∂Ptot

∂z
= (1 + α+ β)

∂Pg
∂z

= ρ(z)g(z) (3)

where Ptot is the total pressure; the sum of gas, mag-

netic, and cosmic ray pressure. We solve for the equi-

librium under the influence of the gravitational profile

Eqn. 2, using an isothermal equation of state Pg = c2sρ

with constant sound speed, and midplane values Pg(z =

0) = Pg,0, ρ(z = 0) = ρ0. The solution to Eqn. 3 is

Pg(z)

Pg,0
=
ρ(z)

ρ0
= f(z) = sechη

[
z

ηH

]
. (4)

The solution depends on how the scale height of the gas

H relates to the gravitational scale height. The scale

‡ Note Parker’s β is not the plasma beta. Instead, the parameter
α is the inverse of the plasma beta βpl = PgP

−1
B = α−1.
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height of the gas is

H =
c2s
g∗

(1 + α+ β). (5)

The ratio of the two scale heights η = H∗/H is a con-

stant. Taking a limit of Eqn. 4 as η → 0 (or equivalently,

H∗ → 0) recovers the solutions in Parker (1966).

We have assumed the pressures, including magnetic

pressure, are homogeneous in surfaces parallel to the xy

plane, which is shown as a green plane in Fig. 1. For our

simulations, we orient the initial magnetic field in the x̂

direction. The magnetic field is shown as a blue arrow

in Fig. 1. Using Eqns. 1 & 4 the magnetic field is

~B(z) = x̂
√

2µ0αPg,0f(z) (6)

Similarly, the cosmic ray pressure is

Pc(z) = βPg,0f(z). (7)

In Fig. 1, the coordinates (x̂, ŷ, ẑ) map to a galactic

disk’s cylindrical coordinates. The x̂ direction is paral-

lel or anti-parallel to the azimuthal direction φ̂ (depend-

ing on whether the magnetic field is oriented clockwise

or counter-clockwise around the galactic center), the ŷ

direction is parallel to the radial direction r̂, and the ẑ

direction is parallel to the cylindrical ẑ direction.

2.1. Parker Instability

Figure 1. This schematic shows our initial setup for hydro-
static equilibrium. We have a gravitational field (red arrows)
in the ẑ direction, which flips sign at the midplane z = 0 (see
Eqn. 2). The magnetic field is oriented along the x̂ direction
and creates a magnetic pressure supporting vertical hydro-
static equilibrium (Eqns. 3,6). We then inject cosmic rays,
shown by a yellow circle, above the midplane, shown as a
green rectangle (see Sec. 3.2 for injection profile).

Figure 2. This schematic shows the parameter space of
magnetic pressure α = PB/Pg and cosmic ray pressure β =
Pc/Pg. For three simple transport mechanisms, we show
the regions of parameter space where the initial hydrostatic
equilibrium (see 2.1) is unstable to the Parker instability.
The first transport is the advection of a relativistic gas with
γc = 4/3, the second transport mechanism is cosmic ray
streaming with an effective γc = 2/3, and the third treats
cosmic rays as an infinitely compressible fluid γc = 0. The
S, U, B, and C points are where are simulations, in Table 1,
are located in this parameter space.

Depending on the values of the parameters α and β,

the equilibrium solution may be unstable to small per-

turbations. We can assess the stability of the medium

with the Schwarzschild convection criterion (Newcomb

1961; Boulares & Cox 1990; Zweibel 2017). This crite-

rion for instability in a vertically stratified atmosphere

is

−d ln ρ

dz
<

ρg∗
γgPg

. (8)

This criterion is applicable above the midplane with z >

0. Assuming we are more than two scale heights above

the midplane z > 2H∗, then the logarithmic derivative is

the scale height H of the gas. Using this assumption and

assuming g∗ is constant in the same region, the criterion

for instability to occur is

α+ β > γg − 1. (9)

If we include the compressibility of cosmic rays, then we

need to replace γgPg → γgPg + γcPc in Eqn. 8. Using

this change and evaluating the criterion again, we get

α+ β(1− γc) > γg − 1. (10)
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The above criterion illustrates a confusing result noted

in Zweibel (2017), and again in Heintz & Zweibel (2018).

Generically, one would guess increasing non-thermal

pressures makes the system more unstable. However,

Eqn. 10 shows there is a way for increasing cosmic ray

pressure (β) to make the system more stable. Since the

cosmic ray fluid is relativistic gas, it has γc = 4
3 when

advection is the dominant transport mechanism. In that

case, the left hand side would be smaller with increas-

ing β. However, if cosmic rays are transported via the

streaming instability, then the cosmic ray fluid has an

effective value γc,eff = γc/2 = 2
3 (Wiener et al. 2017).

This transport case leads to a more intuitive result: in-

creasing β makes the system more unstable.

These considerations of stability are summarized in

Fig. 2, which is a schematic and not completely pre-

dictive of our simulation setup, which has a variable

g∗ and logarithmic density derivative. The schematic

shows the α-β space of equilibrium solutions with an

adiabatic gas exponent γg = 5/3. Using Eqns. 9 and

10, we show different regions of stability determined by

the effective cosmic ray adiabatic index γc,eff . There is

a strictly Parker unstable region (unshaded), a strictly

Parker stable region (black), and in the gray regions,

stability depends on cosmic ray transport. For smaller

values of γg, the fan of stability boundaries shifts down-

ward so the boundaries intersect on the vertical axis

where α = γg − 1.

2.2. Cosmic Ray Transport

The stability of the system described in Sec. 2.1 and

illustrated in Fig. 2 depends on the effective compress-

ibility of the cosmic rays, and therefore on cosmic ray

transport. Cosmic rays are transported throughout the

interstellar medium by three mechanisms: advection,
streaming, and diffusion. Advection is the simplest: if

the thermal gas has a bulk flow in a particular direction,

the cosmic rays should flow with the gas. If advection is

dominant, then the cosmic rays are a relativistic fluid,

with negligible mass, following the flow of the thermal

(non-relativistic) gas.

Streaming is the result of a gyroresonant instability,

wherein cosmic rays generate hydromagnetic waves and

scatter off those same waves. This instability appears

in kinetic theory for cosmic ray transport, and it drives

the cosmic rays into a bulk flow at the Alfven speed

vA. When the gyro-orbit of the cosmic rays is similar

in size to the wavelength of an Alfven wave, the cosmic

ray will scatter off the wave. This process produces a

shift in the cosmic ray distribution function. That shift

produces a bulk flow along magnetic field lines, down

the (spatial) cosmic ray pressure gradient, at the Alfven

speed (Kulsrud & Pearce 1969; Wentzel 1969; Skilling

1975).

In fluid simulations, the streaming instability is often

included by adding a velocity

vs = − B
√
µ0ρ

B · ∇Pc
|B · ∇Pc|

= −vA
B · ∇Pc
|B · ∇Pc|

(11)

to the cosmic ray fluid flow (Breitschwerdt et al. 1991;

Sharma et al. 2010; Jiang & Oh 2018). The streaming

instability heats the gas: the cosmic rays transfer en-

ergy to hydromagnetic waves through gyro-resonance,

which then dissipate energy into the thermal gas (Kul-

srud & Pearce 1969; Wentzel 1969; Skilling 1975). This

heating appears as a source term in the equation for the

thermal energy density and the cosmic ray energy den-

sity. The work done by the cosmic rays on the thermal

gas, through the hydromagnetic waves, is a result of the

streaming instability is vA ·∇Pc (Breitschwerdt et al.

1991; Jiang & Oh 2018). This work term is in addi-

tion to the individual adiabatic compressibility of the

thermal fluid and the cosmic rays.

Diffusion of cosmic rays allows the cosmic rays to leak

through the thermal gas. Cosmic rays in the Milky

Way diffuse through a kiloparsec of gas on the time

scale of ∼ 10 Myr. This timescale leads to a diffusion

coefficient of κc ∼ 3 · 1028 cm2 s−1. However, galaxy

simulations have suggested higher diffusion coefficients,

κc > 1029 cm2 s−1, are necessary to match γ-ray obser-

vations of other galaxies (Chan et al. 2019).

Each of these transport methods drives a different

characteristic response in the ISM when cosmic rays are

injected. With a cosmic ray injection, advection and

streaming will both drive a steep front of material. How-

ever, whereas advection will result in the cosmic ray fluid

moving at the flow speed, streaming allows the cosmic

rays to move at the Alfven speed, possibly ahead of the

gas. Then, the front of cosmic rays can move through

the gas it has compressed. Diffusion, in contrast to both

streaming and advection, drives a smoother flow of cos-

mic rays as the injection slowly spreads out through the

ISM. Since we vary the magnetic field strength, diffu-

sion coefficient, and thermal adiabatic index γ in our

simulations, we provide the following useful timescales

for transport through a distance L of the ISM:

τadv = L ·
(
γgP0

ρ0

)−1/2

(12)

τstr = L ·
(

B0√
µ0ρ0

)−1

(13)

τdiff =
L2

κc
(14)
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In our simulations, the gas flows are generally sub-

sonic, so the advection timescale is an imperfect mea-

sure: the correct timescale will be larger. For advection

dominated simulations, we set the simulation parame-

ters such that the streaming and diffusion timescales

are much larger than an order unity multiple of the ad-

vection timescale in Eqn.12. However, when the ad-

vection and streaming timescales are similar according

to Eqns. 12 & 13, the streaming transport dominates the

dynamics in our simulations because of this overesti-

mated flow speed. We only use these timescales to deter-

mine the dominant transport mechanism, defaulting to

streaming when the streaming and advection timescales

are similar (i.e. Simulation U - see Table 1). When cal-

culating these timescales in Table 1, we use a distance

L = 1 kpc because that is the distance between the in-

jection location and the edge of the simulation in the x̂

direction. Therefore, it is the distance the injected cos-

mic rays need to travel along the magnetic field before

leaving the simulations.

3. SETUP: EXPLOSIONS IN A STRATIFIED

MEDIUM

To explore how cosmic ray injection affects the ISM,

we run simulations using the Athena++ code (Stone et al.

2020). Athena++ is a fully parallel general relativis-

tic magnetohydrodynamic code used for simulations of

galaxies, stars, accretion disks, jets, ISM clouds, and

other astrophysical objects. We use the implementation

from Jiang & Oh (2018) which evolves a relativistic fluid

(of cosmic rays) with negligible mass alongside the ther-

mal gas. Below, we outline the numerical methods and

our initial conditions.

The conservative fluid equations, including a cosmic

ray component, are (Stone et al. 2020; Breitschwerdt

et al. 1991):
∂ρ

∂t
+∇ · (ρv) = 0 (15)

∂B

∂t
−∇× (v×B) = 0 (16)

∂
(
ρv
)

∂t
+∇ ·

(
ρvv +

(
Pg +

1

2
B2

)
1−BB

)
= ρg − (γc − 1)∇Ec (17)

∂E

∂t
+∇ ·

(
v

(
E + Pg +

1

2
B2

)
−B (B · v)

)
= ρg · v − ∂Ec

∂t
−∇ · Fc (18)

∂Ec
∂t

+∇ · Fc = (γc − 1) (v + vs) · ∇Ec (19)

Fc = γc (v + vs)Ec − κ̂c · ∇Ec (20)

The dynamical variables are density ρ, bulk flow ve-

locity v, gas pressure Pg, magnetic field B, the com-

bined internal and kinetic energy density E = P/(γg −
1) + ρv2/2, and the cosmic ray energy density Ec =

Pc/(γc − 1). There is a fixed expression (Eqn. 20) for

the cosmic ray flux Fc, which contains the rank-2 dif-

fusion tensor κ̂c. The rank-2 identity tensor (or Kro-

necker delta) is 1. Bold variables are all vectors (rank-1

tensors), with three components. The gravitational ac-

celeration g ∝ ẑ is given by Eqn. 2. Others mix the use

of Pc and Ec (see the Appendix of Breitschwerdt et al.

(1991) for canonical equations). Here, we have written

everything in terms of Ec to emphasize that it is the con-

servative dynamic variable used in the simulation. Note

these equations are in units with µ0 = 1, unlike the

Gaussian-cgs units used in Breitschwerdt et al. (1991).

Solving these equations requires additional numeri-

cal work compared to the case with no cosmic rays in-

volved. In particular, the streaming instability requires

new methods to avoid numerical problems at maxima in

cosmic ray pressure (Sharma et al. 2010). We use the

implementation of cosmic rays in Athena++ presented

in Jiang & Oh (2018). In this implementation, the cos-

mic ray flux is a separate variable. This two moment

method inspired by radiative transfer (Jiang et al. 2014)

makes the code more accurate and numerically stable

near peaks in cosmic ray energy density. Neglecting the

continuity (Eqn. 15) and induction (Eqn. 16) equations,

which do not change in this implementation, the actual

equations we solve in Athena++ are:

∂
(
ρv
)

∂t
+∇ ·

(
ρvv +

(
Pg +

1

2
B2

)
1−BB

)
= ρg + σ̂c ·

(
Fc −

4

3
vEc

)
(21)

∂E

∂t
+∇ ·

(
v

(
E + Pg +

1

2
B2

)
−B (B · v)

)
= ρg · v − 1

3
(v + vs) · ∇Ec (22)

∂Ec
∂t

+∇ · Fc =
1

3
(v + vs) · ∇Ec (23)

1

V 2
m

∂Fc
∂t

+ (γc − 1)∇Ec = −σ̂c ·
(

Fc −
4

3
vEc

)
(24)

This implementation automatically treats the cosmic

rays as a relativistic fluid with γc = 4/3. There are two
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Figure 3. Magnetic (blue, dash-dotted line), gas (green,
solid line, and cosmic ray (red, dashed line) pressure averaged
over horizontal distance x for α = 10/3 & β = 1.25. All
pressures start at the same initial profile shape, shown as a
black, dotted line. Gas pressure is compressed towards the
midplane whereas cosmic ray and magnetic pressures spread
out of the disk.

key changes here. First, the diffusion tensor κ̂c is re-

placed by σ̂c; the components of this tensor have units

of time/length2, so they are determined by the recip-

rocal of the diffusion rates in each direction. Second,

Jiang & Oh (2018) introduced a modified speed of light

Vm with the variable cosmic ray flux. Modifying the

speed of light allows the simulations to be more efficient

by avoiding the stiff time limit imposed by using the ac-

tual speed of light. Since this parameter is arbitrary (at

a minimum it must be larger than any other velocities

in the simulation), we consider the convergence of our

simulations for different values of Vm in Appendix B.

3.1. Comparison with Parker Instability Simulations

To test our numerical methods and initial conditions,

we ran a 2D simulation matching one in Heintz et al.

(2020). Those simulations used the FLASH code (Fryx-

ell et al. 2000), along with the streaming transport

method in Sharma et al. (2010). Matching those param-

eters (originally based on Rodrigues et al. (2016)), we

use ρ0 = 6.76·10−25 g cm−3, Pg,0 = 8.19·10−13 erg cm−3,

g∗ = 2 · 10−9 cm s−2, η = 2, H = 250 pc, α = 10/3,

β = 1.25, and Vm = 0.01c. We find that that our sim-

ulation method is consistent with that of Heintz et al.

(2020), and our results are illustrated in Fig. 3. Fig. 3

compares horizontally averaged profiles of the various

pressure components at a highly nonlinear stage of the

instability with their original profiles. The magnetic and

cosmic ray pressures decrease more slowly away from the

plane as the magnetic field becomes bent, while gas pres-

sure is compressed towards the midplane. Gravity pulls

the gas down along the magnetic flux tubes, which have

turned perpendicular to the disk in several locations.

Our simulation matches expected behavior (see Fig. 11

of Heintz et al. (2020), a similar plot but at a time of

500 Myr) and evolves on a similar time scale. This result

shows that our initial background conditions agree with

other Parker simulations. Additionally, it shows the cos-

mic ray evolution method implemented in Athena++ by

Jiang & Oh (2018) is accurate for this setup and the

current investigation, since it is in reasonable agreement

with the FLASH code’s implementation of cosmic rays

(Fryxell et al. 2000; Sharma et al. 2010; Heintz et al.

2020).

3.2. Initial Conditions for Injection Simulations

The initial profiles of density, gas pressure, mag-

netic field, and cosmic ray pressure are described in

Sec. 2. We use midplane density and pressure val-

ues of ρ0 = 10−24 g cm−3 and Pg,0 = 10−12 g cm−3.

We use an asymptotic gravitational acceleration g∗ =

4 · 10−9 cm s−2 and a gravitational scale height H∗ =

100 pc. We use a smaller gravitational scale height for

the injection simulations (compared to H∗ = 500 pc in

Sec. 3.1) because we want the injection to move under a

constant gravitational acceleration. This change, along

with increasing the gravitational acceleration, makes it

harder for buoyancy to overpower the gravitational force

on the gas. Using similar pressures as the Parker sim-

ulation in Sec. 3.1, our initial profile’s height ratio η

(see Eqn. 4) is smaller than expected in the Milky Way.

As previously mentioned, γc = 4/3, since the stream-

ing instability is included explicitly in the implementa-

tion by Jiang & Oh (2018). Therefore, changing γc to

γc,eff = γc/2 would be redundant and over-estimate the

impact of streaming.

The simulation grid is 200×50×300 cells (ordered with

respect to (x̂, ŷ, ẑ)) . The cell size is 10 × 20 × 10 pc3,

giving a total simulation volume 2 × 1 × 3 kpc3. The

second dimension is off-center of the midplane (z = 0),

extending from z = −1 kpc to z = +2 kpc. The cosmic

rays are injected above the midplane (z > 0), so this

off-centering focuses the computational resources on the

injection and the resulting flows. We do not use any

adaptive or static mesh refinement.

The cosmic ray injection profile is a 3D Gaussian func-

tion:

εc(x, y, z) =
ESN

(2πr2
SN)

3/2
· exp

[
−1

2r2
SN

|~x− ~x0|2
]
. (25)

The parameters of the injection are its position ~x0, ra-

dius rSN, and total energy injected ESN. The formula

is for cosmic ray energy density εc. We add this pertur-

bation onto the background cosmic ray pressure profile
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in Eqn. 7. Integrating the profile, Eqn. 25, over volume

gives ESN as the total energy injected. The injection oc-

curs at different heights above the midplane depending

on the other parameters under consideration (see Table

1).

In each simulation, we use the same injection radius

rSN = 50 pc. This radius is large for a single supernova

shock, but we will end up considering cosmic ray injec-

tion from multiple supernova (see Sec. 3.3) in the same

volume. This larger radius would then contain ∼ 10

supernovae. Additionally, this radius allows our sim-

ulation (with 10 − 20 pc resolution) to reliably sample

the injection profile. To avoid sampling errors (aliasing)

which will change the total injected energy, we center

the injection in the xy plane on a cell. The grid has cell

faces along x = 0 and y = 0 planes, so we choose to

center the injection at x0 = 5 pc and y0 = 10 pc. As a

result, the peak of the profile occurs in the center of a

computational cell. The height z0 and total energy ESN

are varied across our simulations (see Table 1).

3.3. Justification of Parameters

We present the results of several simulations of cos-

mic ray injection in a cosmic ray magnetohydrodynamic

version of Athena++ (see Jiang & Oh (2018)). Table 1

shows the list of our simulations with their critical pa-

rameters and our labels for them. The simulations help

us answer several questions, presented in the introduc-

tion and repeated here for convenience:

• (Q1) How does the background medium’s stability

change the injection’s impact?

• (Q2) How does the choice of cosmic ray transport

model change the injection’s impact?

• (Q3) How do the injection’s strength and vertical

location change its impact?

• (Q4) How does cosmic ray injection differ from

heat injection by a thermal explosion?

We chose parameters such that our simulations would

answer these questions. We first considered what values

of α and β are reasonable in the Milky Way galaxy. In

our galaxy, measurements suggest the pressures (ther-

mal, cosmic ray, and magnetic) are nearly equal (Ruz-

maikin et al. 1988). Therefore, we choose a base run

with α = β = 1. Simulations with these values are

named with a prefix U. In Fig. 2, this is on a stability

boundary when cosmic ray streaming is not included.

However, each simulation in Table 1 includes transport

by streaming (even when it is not dominant). There-

fore, γc,eff ≤ 4/3, which suggests this equal pressure

case is Parker unstable. To compare this case with a

strictly Parker stable case, we run a simulation with

α = β = 0.1. We use a prefix ‘S’ to refer to this

combination of values. Our first two simulations, la-

belled U and S, allow us to determine how the stability

of the background medium changes the effect of cosmic

ray injection. For both these simulations, we use a gas

adiabatic constant consistent with a monatomic ideal

gas γg = 5/3, a negligible cosmic ray diffusion constant

κc = 3 ·1024 cm2 s−1, and an injection energy equivalent

to the total kinetic energy (∼ 1051 erg) injected into the

ISM by a single supernova. However, only 10% − 20%

of the kinetic energy of a supernova ends up in cosmic

rays (Caprioli & Spitkovsky 2014). On the timescale we

are considering (millions of years), it is more likely to

expect a cloud of star formation to produce multiple su-

pernovae in a localized volume in a time shorter than we

resolve. Therefore, our chosen injection energy is ∼ 10%

of the energy output by ∼ 10 supernovae exploding in

the same volume. Our third simulation has the same

parameters as U except for the adiabatic gas constant

γg = 1.1, which brings the system closer to the isother-

mal case originally considered by Parker (1966). We

name this simulation U-iso. Note that remaking Fig. 2

with this adiabatic constant would shift all the stability

boundaries down. Therefore, the equipartition case of

α = β = 1 used in U-iso is strictly Parker unstable.

To answer Q2, we need a way to differentiate the

dominant cosmic ray transport mechanism. We esti-

mate the dominant transport mechanism by consider-

ing each transport’s timescale, given by Eqns. 12, 13, 14.

The flows in our simulations are subsonic and our advec-

tion timescale assumes propagation at the sound speed.

So, when streaming and advection timescales are close,

we assume streaming will dominate. Our first two sim-

ulations, named U and S, are instances of streaming and

advection dominance, respectively. To completely iso-

late the impact of each transport mechanism, we probe

two other points in the α − β plane of Fig. 2. We run

a simulation with a large magnetic field α = 1.9 and

low amount of background cosmic rays β = 0.1, so it

is in the top left corner of Fig. 2. This simulation is

labelled B-str, and streaming dominates the transport

of the injected cosmic rays because the Alfven speed

is much higher than the flow speed and the diffusion

rate. We also run a simulation C-adv with α = 0.1

and β = 1.9, placing it in the bottom right hand cor-

ner of Fig. 2. With this simulation, we probe a Parker

stable medium with large non-thermal pressure where

streaming is a subdominant transport mechanism. The

simulation C-diff has the same values of α and β, but

uses a diffusion constant κ = 3 · 1028 cm2 s−1 which is
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Parameters Timescales (L = 1 kpc)

ρ0 = 10−24 erg cm−3 H∗ = 100 pc Vm = 0.3c τadv = 76 Myr
√

(5/3)/γg

P0 = 10−12 erg cm−3 g∗ = 4 · 10−9 cm s−2 κc,⊥ = 3 · 1024 cm2

s
τstr = 69 Myr

√
1/α

cs = 106 cm s−1 rSN = 50 pc γc = 4/3 τdiff = 10 Myr
(

1028 cm2

s
/κc

)
T = 1.21 · 104 K (m̄/mp) B0 = 5.06µG

√
α

Run Name α β γg H (pc) η z0 (pc) Weight (M�) ESN (erg) CR κc,‖
(
cm2 s−1

)
Section

S 0.1 0.1 5/3 97 1.03 45 1.28 · 104 1051 Adv. 3 · 1024 Q1

U 1.0 1.0 5/3 243 0.41 105 2.24 · 104 1051 Str. 3 · 1024 Q1,Q3,Q4

U-iso 1.0 1.0 1.1 243 0.41 105 2.24 · 104 1051 Str. 3 · 1024 Q1

C-adv 0.1 1.9 5/3 243 0.41 105 2.24 · 104 1051 Adv. 3 · 1024 Q1,Q2

B-str 1.9 0.1 5/3 243 0.41 105 2.24 · 104 1051 Str. 3 · 1024 Q1,Q2

C-diff 0.1 1.9 5/3 243 0.41 105 2.24 · 104 1051 Diff. 3 · 1028 Q1,Q2

U-heavy 1.0 1.0 5/3 243 0.41 25 3.27 · 104 1051 Str. 3 · 1024 Q3

U-blast 1.0 1.0 5/3 243 0.41 105 2.24 · 104 1052 Str. 3 · 1024 Q3

U-therm 1.0 1.0 5/3 243 0.41 105 2.24 · 104 1051 ∗ Str. 3 · 1024 Q4

Table 1. The first table shows the parameters held fixed across our simulations, as well as derived timescales. The second table
shows the parameters we vary for each simulation run we perform. The first column shows each simulation run name. The next
columns show background medium parameters: magnetic pressure to gas pressure ratio α, cosmic ray pressure to gas pressure
ratio β, thermal adiabatic index γg, gas scale height H, and profile exponent η (see Eqn. 4). The second set of columns shows
injection parameters: initial height of the injection z0, the weight in the column above the injection, and the volume integrated
injection energy ESN (see Eqn. 25), The third set of columns shows dominant cosmic ray transport mechanism, and the parallel
cosmic ray diffusion coefficient κc,‖. The final column shows which questions the simulation applies to (see Sec. 1 & 3.3).

closer to estimated Milky Way values. These three sim-

ulations allow us to isolate how streaming, advection,

and diffusion each transport the cosmic ray injection.

Additionally, B-str and C-adv give us more informa-

tion to answer Q1 because they are at different points

in the αβ-plane. They have different background cos-

mic ray and magnetic pressures from simulations U or S,

allowing us to learn how that aspect of the background

medium changes the impact of cosmic ray injection.

For Q3, we adjust parameters related to the injection.

Using simulation U as a control case, we compare each

of the following simulation to it and only change sin-

gle parameters. First, we use simulation U-heavy with

the cosmic ray injection at a lower height in the disk,

meaning it has more weight above it. Second, we use

a simulation, U-blast, with the strength of 10% of 100

supernovae to understand how different amounts of en-

ergy injection change the results. Other than the weight

above the injection and the injection energy, we keep the

variables the same as simulation U, which we compare

each of these cases against.

For Q4, we run a simulation, U-therm, with the same

initial parameters as the Parker unstable simulation U,

except the injection is in thermal pressure instead of in

cosmic ray pressure.

In the next section (Sec. 4), we cover each simulation,

studying how the cosmic ray injection evolved over time,

along with how it changed the medium around it. In the

subsections of Sec. 5 we compare the simulations and

provide our answers to questions Q1-Q4.

4. RESULTS: INDIVIDUAL SIMULATIONS

In presenting our results, we focus on a flux tube en-

closing the initial injection. Since we use the ideal MHD

equations, the gas stays on the flux tube. Also, the in-

jected cosmic rays stay on this flux tube because there

is effectively no perpendicular diffusion. The injected

cosmic rays then force the rest of gas and background

cosmic rays on the flux tube to move. For each simu-

lation, we show quantities averaged along the tube. In

Figs. 4, 5, 6 we show the average height change of the

flux tube as a solid black line, the average gas pressure

as a solid purple line, the average magnetic pressure as a

dashed purple line, the average cosmic ray pressure as a

dash-dotted purple line, and the average mass as a dot-

ted green line. We also show the highest point along the

flux tube at any moment in time as a dashed black line.

These quantities help us understand how the injection

evolves through time and how it causes the flux tube to

change.

For some of the simulations, we show 2D cuts (xz-

plane) from the 3D simulations in Figs. 7, 8, 9. These

cuts show the gas pressure, horizontal (x̂) momentum,

and vertical (ẑ) momentum at different times in the sim-
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ulation. We show the magnetic field lines used to de-

fine the flux tube in the plots of horizontal momentum.

Specifically, we show five field lines. The middle field line

is the central axis of the flux tube, and the field lines di-

rectly above and below mark the edge of the scalar dye

(a distance r0 = 50 pc from the central axis of the flux

tube). Therefore, the middle three field lines denote the

volume we averaged over to produce Figs. 4, 5, 6. Out-

side the middle three field lines outlining the flux tube,

we plot two more field lines which are a distance 2r0

from the central axis. Finally, in Fig. 10, we show the

cosmic ray pressure distribution at three different time

snapshots for the simulations (C-adv, B-str, C-diff)

shown in Figs. 7, 8, 9.

4.1. Simulation S

In simulation S, we injected 1051 erg of cosmic rays

into a Parker stable medium (see Fig. 2 and Table 1).

‘Parker stable’ refers to linear, small amplitude pertur-

bations, so we did not necessarily expect the run to be

stable against our nonlinear, large amplitude perturba-

tion. However, we found the simulation did return to

an equilibrium after the cosmic ray injection dissipated.

The flux tube evolution in this simulation is shown in

the top panel of Fig. 4.

The injection launches the tube upward, but only in

the area near the injection (see the peak height in the

top panel Fig. 4). During the explosion and rise, the

average magnetic pressure, gas pressure, and mass all

decrease. After the injection dissipates along the tube,

the average values (except for average cosmic ray pres-

sure) along the flux tube reach new stable values. This

new stability results in the flux tube’s peak falling back

down. The flux tube levels out near its initial height, in-

cluding the peak region which initially rose rapidly. The

decrease in average cosmic ray pressure slows as a result

of the injection reaching the edge of the simulation by

approximately 76 Myr (see Table 1). At this point, the

injected cosmic rays leave the simulation out of the ends

of the flux tube.

The middle part of the tube eventually falls back down

as a reverse flow propagates into the cavity, which has

a lower gas pressure. This flow is seen with the increase

in gas density and pressure 80 Myr after the injection.

This inflow to the cavity increases the gas density there,

reversing the buoyancy the parcel initially felt.

4.2. Simulation U

In simulation U, we injected 1051 erg of cosmic rays

into a Parker unstable medium (see Fig. 2 and Table

1). In this simulation run, the streaming time is shorter

Figure 4. Time evolution of simulations S, U, and U-iso.
After injecting cosmic rays on a magnetic flux tube, we track
that tube’s movement. The solid black line is average height
along the length of the tube, whereas the dashed black line
is the peak height along the length of the flux tube. The
green dotted line is the average mass along the flux tube, as
a fraction of the initial average mass along the tube. The
purple solid, dashed, and dash-dotted lines are the gas, mag-
netic, and cosmic ray pressure, respectively, averaged along
the length of the flux tube. In simulation S, the flux tube’s
peak height increases rapidly due to the injection. Eventu-
ally though, the peak falls back down and the entire flux
tube finds a new equilibrium position. In simulation U, the
cosmic ray injection causes the tube to rise only after enough
mass has been pushed off the tube. In simulation U-iso, the
same process happens except sooner, because it is easier to
push the gas off the flux tube.
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than the advection time (see Eqns. 12, 13) but they are

close in value. The flux tube evolution in this simulation

is shown in the middle panel of Fig. 4.

The different time dependence of tube height and aver-

age pressures and mass when compared to the top panel

of Fig. 4 highlights the change in parameters between

simulations S and U. For run U, the streaming cosmic rays

heat gas while pushing gas along the flux tube. There

is also a reflected wave front which slightly increases the

average mass and pressure early in the run. Then, the

mass and pressure decrease slowly as the injected cos-

mic rays move towards the edges of the simulation. Once

they reach the boundaries, as early as 60 Myr after the

injection, we see the average cosmic ray pressure along

the flux tube drop (middle plot of Fig. 4). During this

time, the flux tube has slowly been rising near the ini-

tial injection location. This increase in peak height is

because the cosmic rays took some gas away from the

center, leaving it buoyant. This slow buoyant rise cre-

ates a new way for gas to move - because the flux tube

is bent, the gravitational force pulls gas down the mag-

netic field lines, toward the disk. This process continues

to decrease the average mass along the flux tube. After

140 Myr, the entire flux tube begins to buoyantly rise

because it has lost so much mass (see average mass and

average flux tube height in middle plot of Fig. 4). Also,

the average height and peak height track with each other

after approximately 100 Myr. This tracking is charac-

teristic of the entire tube rising buoyantly, not just the

central portion where the injection originated.

4.3. Simulation U-iso

In simulation U-iso, we injected 1051 erg of cosmic

rays into a Parker unstable medium (see Fig. 2) with a

thermal adiabatic exponent γg = 1.1. In this simulation

run, the streaming timescale is shorter than the advec-

tion timescale because decreasing γg increases the ad-

vection timescale (see Eqns. 12, 13). The flux tube evo-

lution in this simulation is shown in the bottom panel

of Fig. 4.

While the trends are very similar to simulation U, the

bottom panel of Fig. 4 shows buoyant rising even after

an increase in average mass above the original value.

Additionally, the gas pressure is relatively constant until

buoyant rising starts after & 100 Myr. This constancy

of gas pressure is related to the near isothermal nature

of the gas. This system should be unstable, and the

tube rises despite oscillating up and down early in the

simulation. During the start of buoyancy, the magnetic

pressure becomes dominant along the tube. This change

in dominant pressure also appears in simulation U prior

to buoyant rising.

4.4. Simulation C-adv

In simulation Cadv, we injected 1051 erg of cosmic rays

into a Parker stable medium (note γc = 4/3 and see

Fig. 2). In this simulation run, the advection timescale

is significantly shorter than the streaming time (see

Eqns. 12,13) and diffusion is negligible. The lack of

streaming dominance transport means the γc = 4/3

boundary in Fig. 2 is more applicable. Therefore, this

background medium is Parker stable. The results also

mirror the early evolution of simulation S more than sim-

ulation U because advection is the dominant transport.

The flux tube evolution in this simulation is shown in

the top panel of Fig. 5. The rapid rise of the flux tube

does not stop in this simulation. The change in back-

ground cosmic ray pressure therefore makes the system

more prone to disruption by an injection of cosmic rays.

In Fig. 7, we show 2D cuts from this 3D simulation.

Immediately after the cosmic ray injection, the tube

begins to expand upward (black dashed line in top panel

of Fig. 5). This rise is a result of the injection carving a

hole in the disk, shown in the first row pressure plot of

Fig. 7. Eventually, the average height of the tube also

rises dramatically. This rise results from the hole left by

the injection pulling the rest of the flux tube up with

it (see second row of Fig. 7). This pulling causes more

gas to leave the flux tube, further decreasing the mass

in the buoyantly rising section. This decrease in average

mass after 60 Myr is shown in the top panel of Fig. 7. In

Fig. 10, the first column shows how the injection ends

up increasing cosmic ray pressure above the disk. This

trend is similar to the Parker instability’s effect after

saturation: spreading the cosmic rays higher above the

disk, i.e. giving the cosmic rays a larger scale height.

4.5. Simulation B-str

In simulation B-str, we injected 1051 erg of cosmic

rays into a Parker unstable medium (see Fig. 2). In this

simulation run, the streaming timescale is significantly

shorter than the advection timescale (see Eqns. 12,13)

and diffusion is negligible. The flux tube evolution in

this simulation is shown in the middle panel of Fig. 5.

In Fig. 8, we show 2D cuts from this 3D simulation.

The streaming heats the gas along the flux tube, which

is shown by the increase in average gas pressure early

in the simulation, shown in the middle panel of Fig. 5.

In the first row gas pressure panel of Fig. 8, the hole

created by the injection is shallower than in the C-adv

simulation (compare central pressure to the same plot

in Fig. 7). Therefore, the hole takes longer to rise. Since

the rise is slow, the effect of bending field lines and grav-

ity pulling gas down toward the disk becomes important,
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Figure 5. Time evolution of simulations C-adv, B-str, and
C-diff. After injecting cosmic rays on a magnetic flux tube,
we track that tube’s movement. The solid black line is aver-
age height along the length of the tube, whereas the dashed
black line is the peak height along the length of the flux
tube. The green dotted line is the average mass along the
flux tube, as a fraction of the initial average mass along the
tube. The purple solid, dashed, and dash-dotted lines are
the gas, magnetic, and cosmic ray pressure, respectively, av-
eraged along the length of the flux tube. In simulation C-adv,
the flux tube’s peak height increases rapidly due to the in-
jection. Eventually, the rest of the tube follows this explo-
sive launching. In simulation B-str, the cosmic ray injection
heats gas and pushes it down and off the flux tube. Then,
the flux tube rises buoyantly. In simulation C-diff, the in-
jection diffuses along the flux tube, driving a large flow of
gas off the tube. The central region of the tube then rises
buoyantly, eventually pulling the rest of the tube with it.

as in simulations U and U-iso. The flow of gas from this

process is shown in the horizontal (x̂) momentum plots

in the second and third rows of Fig. 8. This flow pro-

duces a buoyant rise, as the peak and average height

increase together in Fig. 5. The buoyant rise becomes

significantly more effective when the magnetic pressure

becomes dominant along the tube, a correlation which

also appeared in simulations U and U-iso. While the av-

erage cosmic ray pressure along the tube decreases, the

overall ambient cosmic ray pressure gradient becomes

weaker. This trend appears in the middle column of

Fig. 10, and matches the expected trend for the Parker

instability where the cosmic rays end up with a larger

scale height than the gas.

4.6. Simulation C-diff

In simulation C-diff, we injected 1051 erg of cosmic

rays into a Parker unstable medium (see Fig. 2) with a

diffusion constant κc = 3 · 1028 cm2 s−1. In this simula-

tion run, the diffusion timescale is much shorter than the

advection or streaming timescales (see Eqns. 12,13,14).

As a result, the initial Gaussian injection of cosmic rays

quickly spreads along the flux tube. This spread drives

flow throughout the flux tube, instead of just at its cen-

ter. The flux tube evolution in this simulation is shown

in the bottom panel of Fig. 5. In Fig. 9, we show 2D cuts

from this 3D simulation.

Similar to both the advection (C-adv) and streaming

cases (B-str) the diffusion creates a hole in the disk,

shown in the first row gas pressure plot of Fig. 9. How-

ever, this hole is wider than in either of the other cases.

As a result, a wider swath of the flux tube begins to

buoyantly rise. This buoyant rise is shown by the shape

of the peak height in the bottom panel of Fig. 5. This

rise of a peak creates a slope for the excess cosmic ray

pressure to continue pushing gas off the tube. The main

difference between this case and the C-adv case is the

gas and magnetic pressure decrease with the cosmic ray

pressure throughout. This decrease shows the tube is

maintaining pressure equilibrium with its surroundings,

while losing mass; this is characteristic of buoyant rising

for the central part of the tube. Eventually, the tube

has risen significantly and changed the orientation of

the magnetic field (see third row horizontal momentum

panel of Fig. 9). In the third column of Fig. 10, the cos-

mic ray pressure has increased about the disk, so this

simulation also gives the cosmic ray pressure a larger

scale height, similar to a saturated Parker instability.

4.7. Simulation U-heavy

In simulation U-heavy, we injected 1051 erg of cosmic

rays into a Parker unstable medium (see Fig. 2) with
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Figure 6. Time evolution of simulations U-heavy, U-blast,
and U-therm. After injecting cosmic rays on a magnetic
flux tube, we track that tube’s movement. The solid black
line is average height along the length of the tube, whereas
the dashed black line is the peak height along the length of
the flux tube. The green dotted line is the average mass
along the flux tube, as a fraction of the initial average mass
along the tube. The purple solid, dashed, and dash-dotted
lines are the gas, magnetic, and cosmic ray pressure, respec-
tively, averaged along the length of the flux tube. In simula-
tion U-heavy, the tube fails to rise. In simulation U-blast,
the cosmic ray injection causes the tube to rise rapidly, be-
cause so much cosmic ray energy was injected. In simulation
U-therm, the tube rises rapidly because the increased gas
pressure is more effective than cosmic ray injection at de-
creasing the magnetic flux tube’s mass.

exactly the same parameters as simulation U. In this

simulation (U-heavy), the injection is 25 pc above the

disk, instead of 105 pc above the midplane (simulation

U). The integrated weight above the injection is 1.46

times higher than in simulation U (see Table 1). How-

ever, the initial gravitational acceleration is less than in

simulation U. As a result of the increased mass above the

tube and the increasing gravitational acceleration felt as

the tube rises, the buoyant upward flow takes longer to

develop after the injection. The flux tube evolution in

this simulation is shown in the top panel of Fig. 6.

In this simulation, the tube oscillates up and down for

a long time, compared to the other simulations. How-

ever, the increase towards the edge of the top panel of

Fig. 6 is the last oscillation. By 220 Myr, the tube’s peak

height has risen to 0.2 kpc. This takes a longer time than

the tube’s movement in simulation U, which is to be ex-

pected because there is more mass above this injection.

It also must climb out of a lower point in the gravita-

tional potential.

4.8. Simulation U-blast

In simulation U-blast, we injected 1052 erg of cosmic

rays into a Parker unstable medium (see Fig. 2), with

other parameters matching simulation U. This injection

is 10 times the energy injected in simulation U (see Table

1). As a result, the dynamics in this simulation are more

violent. The flux tube evolution in this simulation is

shown in the middle panel of Fig. 6.

In the middle panel of Fig. 6, we show the evolution of

several tube averaged quantities for simulation U-blast.

The tube rises fast as the explosion drives a flow upward

and moves mass off the center of the tube. However, very

quickly, the explosion has blown the tube apart. The

central peak of the flux tube reaches the upper boundary

of the simulation after ∼ 80 Myr, leaving the rest of the

flux tube where the injection has not propagated.

4.9. Simulation U-therm

In simulation U-therm, instead of injecting cosmic

rays we injected energy as thermal heating. This ther-

mal energy injection had the same magnitude, 1051 erg,

as the cosmic ray injection in simulation U. Just as

in simulation U, we injected the thermal energy into a

Parker unstable medium (see Fig. 2), as in simulation

U. The thermal injection launches mass faster than the

cosmic ray injection. The flux tube evolution in this

simulation is shown in the bottom panel of Fig. 6.
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Figure 7. Plots of gas pressure (first column), vertical momentum (second column), and horizontal (x̂) momentum (third
column) at a y = 0 cut of simulation C-adv. In this simulation, the magnetic field is weaker and there is effectively no diffusion
of cosmic rays. Early in the simulation, the cosmic rays are stuck to the thermal gas and build up a large over-pressured region
(row 1). This over-pressure drives an explosion, which expands quickly upward, following the background density and pressure
gradients. At later times (rows two and three), the explosion leaves an under-pressure region at x = 0 in the vertical half of the
plane. This vacated region draws a flow up from the bottom half of the plane (bottom row). The normalization constants are
P0 = 10−12 erg cm−3 and ρ0cs = 10−18 g cm−2 s−1. The white, dashed lines in the first column are density contours. The black
lines in the third column are magnetic field lines.
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Figure 8. Plots of gas pressure (first column), vertical momentum (second column), and horizontal momentum (x̂) (third
column) at a y = 0 cut of simulation B-str. The first row of plots, a time of 4 Myr after the injection, shows the injected cosmic
rays streaming along the magnetic field lines, driving a front of gas. This front of gas results in a low density region near x = 0
along the field lines. This region buoyantly rises at subsequent times (second and third rows), driving more gas out from the x = 0
and causing the entire flux tube to rise. The normalization constants are P0 = 10−12 erg cm−3 and ρ0cs = 10−18 g cm−2 s−1.
The white, dashed lines in the first column are density contours. The black lines in the third column are magnetic field lines.
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Figure 9. Plots of gas pressure (first column), vertical momentum (second column), and horizontal (x̂) momentum (third
column) at a y = 0 cut of simulation C-diff. In this simulation, cosmic ray diffusion is the dominant transport mechanism.
Early in the simulation, the cosmic rays quickly diffuse along the magnetic field lines. This diffusion leaves a significant under-
pressured, under dense region near x = 0. This region begins to rise buoyantly, shown in the middle row. The final row shows
gas has fallen back toward the disk in the region around the injection, while the injection has created an under-dense column
near x = 0. The normalization constants are P0 = 10−12 erg cm−3 and ρ0cs = 10−18 g cm−2 s−1. The white, dashed lines in the
first column are density contours. The black lines in the third column are magnetic field lines.
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Figure 10. Plots of cosmic ray pressure at a y = 0 cut of simulations C-adv (first column), B-str (second column), and C-diff

(third column). The normalization constant is P0 = 10−12 erg cm−3. The blue lines are magnetic field lines. In the first two
rows, cuts are all from the same time snapshots, but the final row shows simulation B-str at a later time snapshot than the
other two simulations. The vertical gradient becomes less steep in simulation B-str, and the gradient is significantly disrupted
in both simulations C-adv and C-diff.
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In this case, the flux tube immediately starts to rise

buoyantly and gas is very quickly pushed off the flux

tube. Cosmic ray pressure takes longer to follow the de-

crease of mass and magnetic pressure. After ∼ 110 Myr,

the top of the flux tube has reached the upper bound

of the simulation, and the tube-averaged values start

to be less useful as a result of this interaction with the

upper boundary. While this simulation highlights the ef-

fectiveness of thermal energy injection, our simulations

lack radiative cooling. This injected, hot gas should cool

by emitting radiation while it expands. We estimate a

radiative cooling time scale determine the effect of ra-

diative cooling on the injection, using Eqn. 34.4 from

Draine (2011):

tcool = 1.1 · 105 yr

(
T

106 K

)1.7 ( nH

cm3

)−1

(26)

For simulation U-therm, the peak temperature in the

center of the injection is 105.04 K, compared to the back-

ground T0 = 103.86 K Therefore, the radiative cooling

time for this injection is tcool ≈ 2.2 kyr. This time scale

is so short that this thermal injection should dissipate

before causing a disruption in the ISM like we see in sim-

ulation U-therm. While temperatures are even higher

in actual supernova remnants (∼ 107 K for the Sedov-

Taylor phase (Draine 2011)), our injection represents a

long term average impact of those remnants. The fun-

damental point is that radiative cooling will limit the

impact of the thermal injection, as compared to a cos-

mic ray injection. A similar effect is seen in models

of supernova heated gas launched from galactic disks,

which tend to be fountains rather than winds (Emerick

et al. 2016).

5. DISCUSSION: SIMULATION COMPARISON

To the questions posed in Sec. 1, we have the following

answers:

• (Q1) A purely Parker stable medium limits the

effect of cosmic ray injection. An isothermal

medium is more prone to disruption by cosmic ray.

See Fig. 11.

• (Q2) Cosmic ray advection and diffusion drive

changes in the ISM on short time scales, through

explosive launching and buoyancy, respectively.

Cosmic ray streaming delays the flux tube’s rise,

but eventually causes buoyant rising. See Fig. 12.

• (Q3) Stronger injections drive more explosive

flows, and injections closer to the midplane take

longer to launch the flux tube. See Fig. 13.

Figure 11. Plot of average tube height (black) and mass
(green) for simulations related to Q1. Note the vertical axis
has been extended compared to Figs. 4, 5, 6. Solid lines are
show simulation S, circle markers show simulation U, dashed
lines show simulation U-iso, dotted lines show simulation
B-str and plus markers show simulation C-adv. The stream-
ing dominated simulations, U and B-str, rise late. The ad-
vection dominated simulations, C-adv and S, have different
results. The primary difference is in their total value of α+β.
Simulation U-iso with γg = 1.1 allows a more mass loss later
in the simulation, when compared with simulation U which
had γg = 5/3.

• (Q4) Thermal injection drives buoyant rising of

the flux tube on a shorter time scale than cosmic

ray injection. Cosmic rays decrease the average

mass along the flux tube at a slower rate. Eventu-

ally, cosmic ray injections overtake thermal injec-

tions in height. See Figs. 13, 14, 15.

In the following subsections, we defend these answers

and provide more complete explanations.

5.1. Dependence on Background Medium (Q1)

We explored how changes in the background medium

affected the evolution of a cosmic ray injection. The re-

sults are shown in Fig. 11, which plots the average mass

and height along the flux tube of each simulation.

The Parker stable simulation (Simulation S) weath-

ers the cosmic ray injection, at least under transport by

advection and streaming, reaching a new stable equi-

librium. When the background is Parker unstable ac-

cording to the original criterion (Eqn. 9), the injection

drives significant change. For the simulations U, B-str,

and C-adv, we can use Eqn. 9 to show the combined

nonthermal pressures dominate the gas compressibility

(α + β = 2) > (γg − 1 = 2/3). The simulations with a

background biased towards magnetic pressure (B-str)

or cosmic ray pressure (C-adv) launch the flux tube

faster than the equipartition case (U). Therefore, the

initial nonthermal pressures, given by (α, β), determine

how prone the system is to disruption by cosmic ray
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Figure 12. Plot of average tube height (black) and mass
(green) for simulations related to Q2. Note the vertical
axis has been extended compared to Figs. 4, 5, 6. Solid lines
are show simulation B-str, circle markers show simulation
C-adv, and plus markers show simulation C-diff. The
streaming case has the flux tube rise buoyantly, but only
after a long time & 100 Myr. In contrast, the advection and
diffusion dominated cases rise early . 100 Myr and cause a
significant amount of mass loss from the flux tube.

injection. This dependence also suggests an ISM with

non-uniform α, β would provide a complex environment

for cosmic ray injection, since different directions and

positions could be more (or less) prone to being dis-

rupted.

The case of an isothermal-like background with γg =

1.1 responds on a slightly shorter timescale than a back-

ground medium with γg = 5/3. This conclusion comes

from considering the average height achieved by the flux

tubes in simulations U-iso and U. In simulation U-iso,

buoyant rising begins after 80 Myr and stays significant

through the end of the simulation. For simulation U,

buoyant rising becomes dominant only after 140 Myr.

The average mass also decreases at a faster rate at late

times in simulation U-iso. Because γg is lower, it takes

less work to compress the gas and push it off the flux

tube once buoyancy kicks in. This change allows mass

to flow at a faster rate, driving the buoyancy force to

become larger.

5.2. Dependence on Cosmic Ray Transport (Q2)

We ran three Parker unstable simulations, each with

a different dominant cosmic ray transport mechanism:

simulation B-str is streaming dominated, simulation

C-adv is advection dominated, and C-diff is diffusion

dominated. With these simulations, it is clear that

streaming does a poor job of launching material when

compared to diffusion and advection, which both disrupt

the ISM on a short time scale ∼ 10 Myr. Fig. 12 shows

the flux tube averaged mass and height for these three

simulations.

Simulation B does not start to rise buoyantly until

a significant amount of mass has been lost from the

flux tube. In comparison, the buoyant rise in simula-

tion C-diff (see bottom panel of Fig. 5, where peak and

average height track along each other) happens quickly.

This buoyancy is the result of a large density hole carved

by the cosmic ray injection (see Fig. 9). A smaller hole

is created in the streaming simulation, delaying the rise

of the flux tube (see Fig. 8). The advective simulation

C-adv is mainly driven by an explosive launching, in-

stead of buoyancy. However, it and the diffusion case

produce similar results in terms of flux tube movement.

The difference between these simulations is more ap-

parent in the beginning of the simulations, when the

launching is different. This difference is seen in the top

rows of Figs. 7& 9.

Of these simulations, the diffusion case is the most

surprising. At the beginning, we suggested cosmic ray

diffusion may have a smaller effect on feedback processes

than streaming and advection, because there is less time

for cosmic rays to impact the ISM. However, our sim-

ulation C-diff shows a large cosmic ray injection can

generate enough force through the cosmic ray pressure

gradient to move mass out of the disk and bend the

magnetic field to be perpendicular to the galactic disk.

5.3. Dependence on Injection Characteristics (Q3 &

Q4)

We ran three simulations focused on the injection

characteristics. The first, U-heavy, placed the injection

lower in the galactic disk. Other than rising later than

other simulations, this simulation gave similar results

when compared to U. Simulation U-blast examined how

increasing the injection energy to 1052 erg would change

the dynamics. This large injection caused significant

change in the ISM, causing the flux tube to rise rapidly.

In Simulation U-therm, we replaced the cosmic ray injec-

tion with a thermal injection of similar magnitude. This

injection contained no mass, but was an over-pressure

(T ∼ 105 K > T0 ∼ 104 K) region. This thermal energy

injection caused rapid mass flow off the flux tube, driv-

ing a buoyant rise. The tube averaged mass and height

of these simulations are shown as part of Fig. 13.

5.4. Fast Disruption: Cosmic rays vs. Thermal

Injection

The simulations which produced the largest changes

in the shortest time for an injection energy 1051 erg were

C-adv, C-diff, and U-therm. These injections had flux

tubes rise in short times . 100 Myr, and caused the flux

tube to lose approximately half its mass on that same

timescale. In Fig. 14 we show the evolution of peak and
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Figure 13. Plot of average tube height (black) and mass
(green) for simulations related to Q3 and Q4. Note the
vertical axis has been extended compared to Figs. 4, 5, 6.
Solid lines show simulation U, circle markers show simu-
lation U-iso, plus markers show simulation U-heavy, and
dashed lines show simulation U-blast. Simulation U-heavy

does eventually rise from the disk after 200 Myr. Simula-
tion U-blast drives an explosive launching faster than the
thermal injection in U-therm.

Figure 14. The evolution over time of each flux tube’s
height and mass. Dashed lines and open markers correspond
to the flux tube’s peak height, whereas solid lines and filled
markers correspond to the tube’s average height. Each simu-
lation is shown until 130 Myr, with markers placed at 10 Myr
increments. Black circles show simulation C-adv, blue stars
show simulation C-diff, and red squares show simulation
U-therm. While the thermal injection in simulation U-therm

initially moves material up faster, at late times the cosmic
ray injections in simulations C-adv and C-diff overtake sim-
ulation U-therm. After 130 Myr, the diffusion transported
cosmic ray injection has created the most extended outflow.

average tube height against mass. The markers on each

line denote 10 Myr steps, whereas the points making up

each line are made with a resolution of 1 Myr. The final

point is at 130 Myr for each simulation. Even though

the cosmic ray injection simulations take a longer time

to start rising, they rise at a faster rate than the ther-

mal injection. They overtake the thermal injection after

approximately 90 Myr, and they have more mass at that

time. This final point, 130 Myr is shown in Fig. 15 for the

three simulations. Fig. 15 shows density of each fast sim-

ulation at y = 0, and illustrates that each produces a dif-

ferent magnetic field structure. So, not only do the sim-

ulations evolve in different ways (see Fig. 14), but also

they produce different long term effects. Considering

simulation U-therm is an overestimate of thermal injec-

tion’s impact (see cooling time argument in Sec. 4.9), we

can focus on the difference between C-adv and C-diff.

The left and middle plots in Fig. 15 show that cosmic

ray transport changes the both the flow of gas around

the rising flux tube and the shape of the magnetic field

lines. Additionally, the thin inner region of rising mate-

rial in simulation C-diff has a steeper density gradient,

and we do not resolve it enough to reliably analyze the

dynamics of this plume of gas. The exact dynamics of

this region created by the rising flux tube could be im-

portant for understanding outflows from galactic disks.

6. CONCLUSION

We ran nine simulations of cosmic ray injection into a

vertically stratified medium, using the Athena++ code.

These simulations illustrated the effect of cosmic ray

injection in a galactic disk, on intermediate scales (∼
1 kpc) larger than the ISM’s fine structure and smaller

than the entire galaxy. By exploring an extended pa-

rameter space, we produced the most detailed picture

yet of localized cosmic ray injection. We also showed

that cosmic ray transport dictates the impact of cosmic

rays on the ISM. Below, we provide the key points and

results of this work:

1. Cosmic ray diffusion of a cosmic ray injection can

change the ISM’s vertical structure and a galaxy’s

magnetic field on timescales < 100 Myr.

2. Heating from cosmic ray streaming by a cosmic

ray injection had little large scale effect on time

scales . 200 Myr.

3. A flux tube disrupted by cosmic ray injection will

rise faster at later times than one disrupted by

thermal injection, producing a larger mass flow of

material out of the galactic disk.

Our simulations provided useful heuristic results by

considering cosmic ray injection in a stratified medium.
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Figure 15. Cuts of simulations C-adv, C-diff, and U-therm. These simulations were the most efficient at launching material
out of the disk, and these plots of density at a time of 130 Myr illustrate an energy injection can disrupt the vertical structure of
a galactic disk. The black lines are magnetic field lines and the white dashed lines are density contours. These plots are cuts of
our 3D simulations at y = 0. The most intense mass movement appears in C-diff, where the contours show a very low density
flux tube stretched into a shell which lifts some cold, dense gas out of the disk.

These simulations are clearly limited in their realism

because galactic disks are not uniformly stratified. The

ISM in galactic disks is multiphase and clumpy. Addi-

tionally, by neglecting the dynamics of the stellar grav-

itational potential, we lack forcing terms which could

change the effects of these energy injections. Future

work should focus on diffusion as the primary cosmic

ray transport mechanism, along with implementation of

more realistic ISM conditions (varying gravitational field

strength, multiple gas phases, galactic rotation, etc.).

The non-constant α, β of the injection have a significant

impact. This non-uniformity should be extended to the

background medium, instead of using the constant α, β
assumption originally introduced by Parker (1966).

In these simulations, we neglected radiative heating

and cooling, but those processes are an important con-

sideration in the ISM. The radiative cooling would be

particularly important for the gas heated by cosmic

ray streaming. Cooling will minimize, and possibly re-

move, the impact of the thermal injection in simula-

tion U-therm. Additionally, multiple supernovae going

off in the exact same volume at the exact same time

is unlikely. In future work, we will aim to resolve the

injection into multiple injections at different times and

locations. Separating the injections in space opens up

a variety of other situations which make it difficult to

isolate the buoyancy the injection creates, hence why we

only considered a single injection location in this work.

For example, explosions nearby one another in the xy

plane but on opposite sides of the midplane could sig-

nificantly compress gas at z = 0, which may then drive

its own flow if the density and pressure gradients are

large enough.

For large scale (cosmological or galactic) simulations,

there needs to be some consideration of cosmic ray injec-

tion. Even simulations which include cosmic rays gen-

erally do not include the impact of their injection into

the ISM. Our work shows they can drive an upward flow

in < 100 Myr after their injection, and most of that up-

ward movement actually happens in < 20 Myr. Since

the upward flow expands out along the magnetic field

line direction, a subgrid model would not be necessary.

A resolution of ∼ 100 pc would be enough to produce

an upward flow like what we see here (consider Fig. 15).

In the y direction, across the magnetic field and in the

plane of the disk, higher resolution would be necessary.

The width of the flux tube barely reaches 100 pc in that

direction, and the overall dynamics in that direction are

minimal. The main impact the y direction had in our

simulations is to allow mass above the flux tube to move

out of the path of the rising flux tube. The actual reso-

lution of that dimension is less significant.

Our work also shows cosmic ray injection is an im-

portant part of dynamics in a galaxy. Moving, heating,

and compressing gas all have an impact on where stars

form and on galactic structure. Since the eventual rise

of the flux tube happens in a short time (< 20 Myr),

the dynamics created by cosmic ray injection would not

be washed out by galactic rotation and other dynamical

processes. In fact, the delay of the quick rise from the
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initial injection provides an interesting setup for galac-

tic dynamics. If the parcel of gas we consider passes

through a spiral density wave, and there the cosmic ray

injection happens due multiple supernova explosions,

then the parcel will have left the spiral density wave be-

fore the injection causes dynamical effects. Therefore,

the heating, compression, and movement of gas would

be happening in lower luminosity regions of disk galaxies

with well defined spiral arms. In future work, we plan

to introduce spiral density waves by adjusting our grav-

itational acceleration profile, to see if the process above

occurs and has observational consequences. Our results

also shed light on the respective roles of cosmic ray com-

pressibility and buoyancy alluded to in Sec. 2.1. The

constant (α, β) model appears to be somewhat special

in that differential loading of cosmic rays onto magnetic

flux tubes and time dependent flows create conditions

under which buoyancy dominates. Including these time

and space localized effects in global simulations is an

important challenge for the future.
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APPENDIX

A. BOUNDARY CONDITIONS

With the goal of minimizing numerical errors, simulations often exploit periodic boundary conditions. In the current

example, using periodic boundaries at every interface is difficult because we are studying a stratified medium. We also

do not want to deal with a shock at the boundaries when the injected material reaches the boundary. Therefore, we

need non-periodic boundary conditions in the direction of gravity (ẑ) and in the primary propagation direction of the

injected material: along the magnetic field (x̂). In an effort to keep symmetry in the midplane of the simulation, the

boundary conditions in the ŷ direction are the same as those of the x̂ direction. This coordinate system is depicted in

Fig. 1

In the direction of stratification (ẑ), we use vacuum (also known as diode) boundary conditions. These conditions

make it impossible for inflow to occur, since the boundary cells are set to the density and pressure floor of the numerical

simulation. We also avoid setting up a steep discontinuity at this boundary by extending the simulation several scale

heights in the vertical direction. Because of this extension, the cells near the boundary are already almost at the

density and pressure floors when the simulation starts. Then, any dynamical activity beyond that initial equilibrium

profile will propagate out of the simulation.

In the direction of the magnetic field (x̂) we use outflow boundary conditions. While these allow inflow from boundary

cells after the crest of a wave passes the boundary, there is very little error if the gas is quickly moving out of the

simulation at that boundary. Our current problem satisfies this assumption because the flow is either static, or large

(when the perturbation pushes gas down a magnetic flux tube and toward the boundary). Ideally, we would again

use vacuum boundary conditions to stop inflow. However, we cannot us a vacuum in this direction since this would

create a significant discontinuity near the midplane of the simulation, where there are gas densities and pressures above

the floor values. This boundary discontinuity would drive a non-physical outflow from the simulation and create a

systematic error in our estimate of flux tube buoyancy. The outflow condition, while worse at handling outflow than

the vacuum conditions, can handle outflow from non-vacuum media. This justification shows the outflow boundary is

the best boundary condition available for the magnetic field direction (x̂).

B. SIMULATION CONVERGENCE

There are non-physical parameters we must choose to run the simulations. However, changing them affects the

simulation results. To mitigate the significance of these parameters we performed several convergence tests.

Figure 16. Convergence of time integrator (left two plots) and CFL number (right three plots). These convergence simulations
were 2D, used a weak injection strength of 1050 erg, and are pictured 200 Myr after the cosmic ray injection. The scalar dye
is shown in units of 10−24 g cm−3. The scalar dye was initialized on a flux tube containing the cosmic ray injection. Magnetic
field lines are shown in green. The vertical ẑ and horizontal x̂ axes are shown in units of 1 kpc. These simulations justified our
choice of a 3rd order Runge Kutta time integrator (rk3) and a CFL number of 0.2 in the 3D simulations presented in this work.
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Figure 17. Convergence of resolution. These convergence simulations were 2D, used a weak injection strength of 1050 erg,
and are pictured 200 Myr after the cosmic ray injection. The scalar dye is shown in units of 10−24 g cm−3. The scalar dye
was initialized on a flux tube containing the cosmic ray injection. Magnetic field lines are shown in green. The vertical ẑ and
horizontal x̂ axes are shown in units of 1 kpc. These simulations justified our choice of a resolution of 10 pc in the 3D simulations,
because the scalar dye is consistent with the results from higher resolutions.

The first test considered whether we needed to perform 3D simulations, as well as what the necessary length was

in that third direction (ŷ in Fig. 1). Our test looked at the height of the flux tube over time, after the injection. We

found the flux tube took longer to rise in 2D simulations, and realized this difference was because the third dimension

allowed mass above the rising flux tube to move out of the way. In the 2D simulations, the rising flux tube had to lift

all the gas above itself. This increased weight slowed the rise of the flux tube, and led us to use 3D simulations for the

main exploration.

Figure 18. Convergence of the reduced speed of light parameter. These convergence simulations were 2D, used a weak injection
strength of 1050 erg, and are pictured 200 Myr after the cosmic ray injection. The absolute value of error in cosmic ray pressure
is shown for each simulation, 200 Myr after cosmic ray injection. The simulation with Vm = c is not shown since the plot would
be blank. With Vm = 0.3c, the error in the region of interest (where magnetic fields are plotted in green) has dipped below 1%.
For the 3D simulations presented in this paper, we used Vm = 0.3c.
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The second test used 2D simulations to narrow our choice of several numerical parameters: time integrator, Courant-

Friedrich-Lewy (CFL) number, resolution, and the reduced speed of light constant Vm in Eqn. 24. Using 2D simulations

allowed us to save computational resources while exploring the convergence of these simulations. The first test proved

the 2D simulations would be less accurate because they limit the movement of magnetic flux tubes, but most of the

fast, dynamic flow is still in the xz-plane. For numerical parameters, the motion in that plane is where we need be

concerned. All the convergence tests here used a weak injection of 1050 erg with other parameters equal to those of

simulation U. With the weaker injection and 2D restricted motion, the flux tube has just begun to rise buoyantly by

200 Myr.

The time integrator choice of 3rd order Runge-Kutta and CFL number (0.2) were well converged, as there was little

to no change in the results 200 Myr after the cosmic ray injection. The convergence of these parameters is shown in

Fig. 16.

The resolution and reduced speed of light constant required more extensive convergence studies. Changing resolution

significantly changed the time scale and resulting dynamics. We varied resolution over a multiplicative factor of 8, and

the results for the evolution of the density of scalar dye are shown in Fig. 17. We decided to use a resolution of 10 pc,

optimizing accuracy and computational time. For the middle resolutions in Fig. 17 the scalar dye and height of the

flux tube are very similar after 100 Myr. We do not expect the magnetic field lines, integrated after the simulation, to

match exactly when comparing across resolutions.

Changing the reduced speed of light significantly changed the simulation dynamics. For each value of Vm, we compare

to a simulation where we used Vm = c. In Fig. 18, we plot a colormap of error in cosmic ray pressure Pc with respect

to the speed of light case Pc(Vm = c). We chose a value of 0.3c since the error barely peaked above 1% in parts of that

simulation, after 200 Myr. The asymmetric, thin transitions in error in the lower half of the simulations are a result

of our plotting the absolute value of the error. The error getting small is more importantly where the error switches

sign. The average error where the field lines are plotted are a more useful measure of accuracy in this parameter study,

because resolution is constant. We chose 0.3c based of that region of these error maps.
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